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Abstract— Learning an accurate and robust eye semantic 
segmentation model generally requires enormous training data 

with delicate segmentation annotations. However, labeling the 
data is time-consuming and manpower-consuming. To address 

this issue, we propose to segment the eyes using unlabelled eye 
images and a weak empirical prior on the eye shape. To make 
the segmentation interpretable, we leverage the prior knowl- 

edge of eye shape by converting the self-supervised learned 

landmarks of each eye component to the segmentation maps. 
Specifically, we design a symmetrical auto-encoder architecture 

to learn disentangled representations of eye appearance and 
eye shape in a self-supervised manner. The eye shape is 

represented as the landmarks on the eyes. The proposed method 
encodes the eye images into the eye shapes and appearance 

features and then it reconstructs the image according to the eye 
shape and the appearance feature of another image. Since the 
landmarks of the training images are unknown, we require the 

generated landmarks’ pictorial representations to have the same 

distribution as a known prior by minimizing an adversarial 
loss. Experiments on TEyeD and UnitySeg datasets demonstrate 

that the proposed self-supervised method is comparable with 
supervised ones. When the labeled data is insufficient, the 

proposed self-supervised method provides a better pre-trained 
model than other initialization methods. 

I. INTRODUCTION 

Understanding human eyes plays an important role in 

medical application, human-computer interaction, virtual re- 

ality, biometric security, and other areas. Explicitly parsing 

eye images into different eye components implies analyzing 

the semantic constituents (e.g., pupil, iris and sclera) of 

human eyes, and is useful for a variety of tasks, including 

gaze tracking, iris recognition, pupil diameter estimation, etc. 

All these applications require the eye parsing/segmentation 

methods to be robust to the various poses, illuminations, and 

other environments. 

Efforts have been made in developing eye segmentation 

methods during the last decades. Some early works propose 

to segment sclera [7] or iris [1] using image processing 

methods, including edge detection [30] and ellipse fitting 

[8]. With the handcrafted features, they usually determine the 

sclera or iris regions by adjusting some thresholds according 

to the distribution of the data. These approaches highly 

depend on stable environments and are likely to fail in new 

distributed data. Recently, ascribe to the development of deep 
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Fig. 1. Main idea of the proposed method (LS2E-Seg). The input eye image 

is translated into its landmarks’ pictorial representation. Then we convert 

the predicted landmarks to the segmentation map. Since the landmark 

annotations of the input images are unknown, we force the generated 

landmarks in-distinguishable among the real ones. 

learning, appearance-based methods based on Convolution 

Neural Network (CNN) have gained popularity and achieved 

the state-of-the-art accuracy on eye semantic segmentation. 

However, a well-trained segmentation network, e.g., SegNet 

[3] and UNet [27], requires diverse training images with 

high-quality annotations about the eyes’ regions. Labeling 

the segmentation needs the annotators to draw a fine edge of 

the target region. It takes minutes to complete the labeling 

of one image. Therefore, some works are proposed to seg- 

ment the images in an unsupervised manner, e.g., IIC [18], 

PiCIE [6]. Although without annotations, most unsupervised 

segmentation methods cannot determine whether some small 

regions or super-pixels should be merged or not. It is also 

cumbersome to determine what the region stands for. 

To this end, we propose a Landmark-aware Self- 

Supervised Eye Segmentation (LS?E-Seg) method to seg- 

ment pupil, iris, and sclera regions from eye images leverag- 

ing unlabelled images of eyes. To make the segmentation 

interpretable, we first learn the eyes landmarks and then 

convert the landmarks of each eye component to the segmen- 

tation maps. To learn the landmarks, inspired by the recent 

self-supervised landmarks learning framework [17], we train 

the landmark detector with unlabelled images and a set of 

landmarks’ pictorial representation, which are not the labels 

to the training images but serve as a prior distribution of 

eye landmarks. Fig. 1 demonstrates the main idea of LS?E- 

Seg. As shown in Fig. 1, given an eye image, an image- 

to-image translation network [15] is used to generate its 

landmarks’ pictorial representation. To guarantee that the 

generated pictorial representation stands for the landmarks 

of eyes’ components, we use a discriminator to judge if the
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generated one is real or fake. Then, we convert the predicted 

landmarks of pupil, iris, and sclera to a segmentation map 

using ellipse fitting. Therefore, we obtain the segmentation of 

each eye component without annotations. Our contributions 

are summarised as follows: 

1. We propose a self-supervised method to segment the 

pupil, iris, and sclera of the eye images according to the self- 

supervised detected landmarks. To the best of our knowledge, 

it is the first work to do eye semantic segmentation in a self- 

supervised manner. 

2. The proposed method learns the landmarks by disentan- 

gling the shape (landmarks) and appearance of the eyes in an 

image reconstructing task. The eye segmentation is converted 

from the detected landmarks and thus it is interpretable. 

3. Experiments on two datasets show the effectiveness 

of the proposed self-supervised method, which achieves 

comparable results with other supervised methods. 

II. RELATED WORK 

A. Eye semantic segmentation 

Since the eye semantic segmentation is considered as a 

sub-problem of an image segmentation task, general image 

segmentation methods were applied to segment eyes. Lian 

et al. [22] proposed to use the attention mechanism on U- 

Net [27] to guide the model to learn discriminative features 

for iris segmentation. Naqvi et al. [24] presented ScleraNet, 

a residual encoder-decoder network based on SegNet[3]. 

To improve muti-class segmentation for eyes, Perry and 

Fernandez [26] proposed to leveraged dilated and asymmetric 

convolution, meanwhile Kansal et al. [19] chose to utilize 

squeeze-and excitation [14] block. 

Besides applying the general segmentation method, some 

works utilized the unique characteristics of eye images. Kim 

et al. [20] proposed to add a heuristic filter after segmentation 

network because the sclera covered the iris, and iris wrapped 

pupil. Fuhl et al. [11] proposed a combined convolutional 

neural network architecture for eyelid landmark, pupil ellipse 

regression together with pupil area and eyelid area segmen- 

tation. Kothari et al. [21] proposed EllSeg framework for 

simultaneous segmentation and ellipse parameter prediction 

for both iris and pupil regions. 

The deep learning based works rely on large, curated 

training datasets of eye images with well-annotated labels 

and have difficulty with generalizing unconstrained environ- 

ments. Learning with limited or no external supervision for 

eye semantic segmentation is still a challenge. 

B. Unsupervised segmentation methods 

Unsupervised or self-supervised techniques have been 

explored recently to conduct image semantic segmentation 

without external supervision. A few works consider unsuper- 

vised semantic segmentation as a problem of clustering pixel- 

level features. Both Ji et al. [18] and Ouali et al. [25] leverage 

an end-to-end approach maximizing the discrete mutual 

information between augmented image pairs to learn a pixel- 

level clustering function and then obtain the probabilities 

of pixels over classes. PiCIE [6] conduct pixel-level feature 

clustering using invariance to photometric transformations 

and equivariance to geometric transformations. However, 

these methods can neither leverage the prior information of 

eye shape nor segment eye images for specific interpretable 

parts (pupil, iris and sclera) we want. 

C. Unsupervised Keypoint Detection 

There have been a few attempts in the literature to tackle 

keypoint detection under the unsupervised setting. Thewlis 

et al. [29] propose to learn sparse viewpoint invariant 

landmarks using the equivalence constraint and develop the 

method to a dense situation [28]. Zhang et al. [32] use an 

auto-encoder paradigm to learn explicit structural representa- 

tions as landmarks. Jakab et al. [16] develop the auto-encoder 

formulation by using conditional image generation and a 

bottleneck to limit the geometric information flow. Based on 

[16], Jakab et al. [17], the most related work of ours, make 

use of an interpretable keypoint prior to learn ’semantically 

meaningful’ keypoint directly. Inspired by [17], we extended 

the idea to the self-supervised eye semantic segmentation 

by combining the self-supervised keypoint detector with 

segmentation fitting. 

II. METHODS 

We aim to learn a function that maps an eye image to its 

semantic segmentation map without annotations. However, 

most general unsupervised segmentation methods can not 

produce interpretable segmentation maps directly. To conduct 

the interpretable self-supervised eye semantic segmentation, 

we first detect the landmarks of the iris, pupil and sclera 

and then using the landmarks to induce the segmentation. 

In the training procedure, we train a self-supervised land- 

mark detector using a symmetric self-supervised learning 

framework with pairs of unlabeled eye images and a set 

of prior keypoints’ pictorial representation. In the inference 

procedure, given an image, we first predict the landmarks 

of eyes and then convert the landmarks of each component 

(iris, pupil and sclera) into its corresponding segmentation 

map. Below, we introduce the two procedures in details. 

A. Training the self-supervised landmark detector 

We learn interpretable keypoints of eyes to identify the 

contours of iris, pupil and sclera. To avoid using the key- 

point labels of images, we use a symmetrical auto-encoder 

architecture to learn disentangled representations between the 

appearance and shape of the eyes. The shape is depicted as 

the landmarks or keypoints of the eye. 

Figure 2 (left) illustrates the self-supervised training 

framework. As can be seen, it takes two different images 

(11, Iz) of the same eye from a video clip as the inputs. Each 

of the image is fed into the appearance encoder E, and the 

keypoint encoder E;, respectively. E;, outputs the keypoint 

pictorial representation K. K contains the information of 

the eye shape (keypoint) and is spatially aligned with J. 

To make K represent the shape (keypoint) information like 

K,-ea which are sampled from keypoint prior, we require the 

discriminator D to judge if the generated K is real or fake. 

The keypoint bottleneck compresses K into the coordinates 

of landmarks and reconstructs a purified keypoint pictorial
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Fig. 2. Framework of the proposed symmetric landmark-aware self-supervised eye semantic segmentation method. In training procedure, the unlabelled 

input images (J1, 2) of the same eye are encoded by Ey, and Eg to get the landmark and appearance features, respectively. E;, outputs the keypoint pictorial 

representation K. The keypoint bottleneck compresses K into the coordinates of landmarks and reconstructs a purified keypoint pictorial representation 

. The inputs images are reconstructed by a generator G according to their own purified keypoint pictorial representation and the swapped appearance 

feature. To make K represent the shape (keypoint) information like K,-cq1, we require the discriminator D to judge if the generated K is real or fake. In 

inference procedure, the eye image J is translated to K by E,. K is regressed to the points coordinates V by ¢. Keypoints V is used for fitting pupil, 

iris and sclera to obtain the final eye semantic segmentation map S. 
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Fig. 3. Examples of the inputs or generated images during the training (left) and the converted eye semantic segmentation map in inference (right). 

representation K. Eq outputs the appearance feature. Ac- 

cording to their own purified keypoint pictorial representation 

and the swapped appearance feature, the inputs images are 

reconstructed by a generator G. This is because J; and I 

are from the same eye under a similar environment, and 

should have the same appearance feature. If we swap their 

appearance feature, we can still reconstruct J, or Ip . 

Below, we present details of the components keypoint 

pictorial representation, keypoint representation prior, key- 

point representation bottleneck, and the objective function 

for learning. 

1) Keypoint Pictorial Representation: To learn the spa- 

tial structure of the eyes, we design the keypoint encoder 

E,, as an image translation network. E;, translates an eye 

image to a pictorial representation of the keypoints, which 

is an image spatially aligned to the input eye image. The 

generated pictorial representation represent the information 

of keypoints. It is composed of the edges that connect two 

keypoints and looks like an image of the sketched structure 

of an eye. In Fig. 2, K; and Kg are two examples of the 

keypoint pictorial representations. 

Mathematically speaking, we denote the keypoint pictorial 

representation as K € RW", where W and H is the width 
and the height of the input image. The keypoint pictorial 

representation K could be generated according to the 2D 

keypoint coordinates V = [v1;v2;--: , Vn], where n is the 

number of keypoints and v; = (2x;, yi) € N? is the coordinate 

of the i-th keypoint. We denote the grid of pixel coordinates 

as Q = {1,2,...,H} x {1,2,..,W}. The value at each 
position u € 2 of the keypoint pictorial representation K 

is computed as 

ky = exp(— min 
P 7 vawsJEE, 

ré€[0,1] 

() Ju —rvi — (1 —r)vylle), 

where k,, is the element of K at position u. € is the set of the 

pre-defined edges with the start-end keypoint pairs (vj, v;) 

and ¥ is 0.2 in our experiments. When the pixel u is on the 

edge that connects v; and v,;, u can be represented as a linear 

combination v; and v,. It means that there exist an r € [0, 1] 
such that u = rv;+(1—r)vj, and ||u—rv;—(1—r)v,||? = 0. 
Then, ky = 1 and it looks bright in the keypoint pictorial 

representation. When the pixel u is far away from all the 

edges in €, ky is around 0. It looks dark in the pictorial 

representation. Therefore, K is visualized as smooth lines
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with the ends as the keypoint pairs. 

It is noted that we do not directly use the 2D keypoint 

coordinates V as the output of E;, to represent the keypoint 

information, because it is easier to train an image-to-image 

translator than to train an image-to-vector regressor without 

supervision. Using an image-to-image translator, we can take 

advantage of the inductive bias in CNN that assumes a certain 

type of spatial structure present in the input image [23]. 

2) Keypoint Representation Prior: Since we do not have 

the ground truth of the output of E,, we leverage a keypoint 

representation prior which is a set of landmark pictorial rep- 

resentations computed from the landmarks of real eye images 

other than the training images. The keypoint representation 

prior is used to make the output of keypoint shape encoder 

Fy looks like the expected keypoint pictorial representation 

rather than other forms. We define a discriminator D to 

distinguish whether the keypoint pictorial representation K 

generated by EF; are from the keypoint representation prior 

to distribution p(K) in order that the distribution of F;,’s 
output can be closed to p(K). 

Mathematically speaking, let us assume the keypoint rep- 

resentation prior as Keay = {Ki}, where N is the size 

of the prior set. Dy, = {(Ij1,Ii2)}#4, denotes the training 

set of unlabelled image pairs, where M is the number of 

pairs. Then, similar to WGAN [2], we could optimize the 

parameters of the keypoint encoder FE; and discriminator D 

by minimize the maximum of an adversarial loss 

. . 1 
min max Ladv(D, Ex) = min max 7 x » D(K;) 

4 real 

1 
-ap Eels) + D(Ex(F2))), 

(Ji1,Ji2)€ Dir 

where F;,(Ij1) and Ex(Ij2) are the generated keypoint 
pictorial representation of the input image J;; and Jj, 

respectively. D(K;) denotes the output of the discriminator 

given keypoint pictorial representation K;. 

3) Keypoint Representation Bottleneck: To purify the 

output of E;, as the information of landmarks, we adopt a 

keypoint representation bottle to prevent the keypoint picto- 

rial representation containing appearance information. As can 

be seen in Fig. 2, in the keypoint bottleneck, we compress 

the keypoint pictorial representation Kj to the coordinates of 

the keypoints V; through a mapping function ¢. Then, we 

reconstruct a purified keypoint pictorial representation K, 

according to V ,. For notation conveniency, we denote the 

operation of reconstruction as (V1) = K1, where the value 

of K, at the position u is computed using Eq. (1). Similarly, 

we obtain the purified keypoint pictorial representation K> 

of the other image I. 

We implement ¢ as a neural network regressor and pre- 

train its parameters using training pairs V = {V*.,,}%4, 
where V,cqi is the real eye keypoints. N is the size of the 

training set. We train the regressor network ¢ by 

N 

min Lreg(V) = min )>||Vieat ~ O((Vea))|la» @) 
w=1 

where we compute the keypoint pictorial representation 

¥(Vi.4) from Vi.,, and re-generate the landmarks by 
o(v(V2...1)). ¢ is optimized by minimizing the discrepancy 
between the original landmarks and generated ones. 

4) Objective Function for Learning: To train the self- 

supervised landmarks detector, we first pre-train the regressor 

@ by (3), then we alternatively update (1) the landmarks 

encoder E,, appearance encoder E,, and the generator G, 

(2) the discriminator D, (3) the regressor @. 

The landmarks encoder £;,, appearance encoder E,, 

and the generator G are updated by the objective function 

using the unlabelled training image pairs and the keypoint 

prior: 

min | Lrec + Leons + Ladv; (4) 
Ex, Ea, 

where L,.. is the image reconstruct loss. Given D;, = 

{ (Tit, Tia) 44, as the training set of unlabelled image pairs, 
where M is the number of pairs, the reconstruct loss is 

formulated as 

M 

Lree = 547 Do if(din) ~ Fla) Ile + If Ee) — Fle) 
wl 

M 
1 2 a 

+ apg 29 lan — Tully + [foe — Teal (5) 

where fj, = G(v(¢(Ex(Ii1))),Ea(Liz)) is the recon- 
structed image of J;; by generator D according to the 

purified landmark representation of J;; and the appearance 

feature of J;2. Similarly, the reconstructed image Tyo = 

G(w(o(Ex(Li2))), Ea(Ti)). f is a pretrained VGG feature 
extractor network. The first summation item force recon- 

structed image features rather than pixels similar to original 

images, which make learning fast and robust. The second 

summation item keeps reconstructed images and original 

images spatially aligned, which is important to keypoint 

pictorial representation learning. 

Leons is the consistent loss that makes the output keypoint 

pictorial representation of E;, as purified as possible. It is 

formulated as 

1 “2 

Leons = 57 Sod WEx(is) — V(b Ex(Ly) lh. © 
i=1 j=l 

Lady is the adversarial loss described in Eq. (2) with fixed 

discriminated D. 

The discriminator D is updated by maximizing the 

adversarial loss Lagy defined in Eq. (2) with fixed landmark 

encoder E;, by maxp Lady (D, Ex). 

The regressor ¢ is updated by the objective function 

ming Loons + Lreg, Where Leons is defined in Eq. (6) and 

is computed with the unlabelled training images and fixed 

landmarks encoder E,. Lreg is defined in Eq. (3) and is 

computed with the prior real landmarks. 

B. Segmentation with map fitting 

In the inference procedure, we use the obtained inter- 

pretable keypoints V to create the semantic segmentation
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noisy § input image | noisy K 

Fig. 4. Illustration of noisy S and noisy K. EF, outputs the noisy S when 

we replace the keypoint representation prior to semantic segmentation map 

prior. 

maps, which is illustrated in Fig.2 (right). We fit the iris 

landmarks and the pupil landmarks into ellipse by ellipse 

fitting method and get the ellipse parameters. According to 

the parameters, we draw the iris and pupil masks. We connect 

eyelid landmarks point-by-point to get the contour of sclera 

and draw the mask. Then, we integrate the masks of pupil, 

iris and sclera into the semantic segmentation maps S. 

Ellipse fitting finds the ellipse parameters A given the 

coordinates of a series of points P = {pi,po,...,;Pn} on 

the ellipse edge. We denote an ellipse by a second-order 

polynomial: 

F(p; A) = A-dp = ax’ +bry+cy?+dx+eyt+f =0 (7) 

where A = [a,b,c,d,e,f]?, p = [x,y]? and dp = 
[x?, xy, y?, x,y, 1]7. We minimize the sum of squared al- 
gebraic distances on P with regard to ellipse parameters A: 

N 

min 2 FP A)’. (8) 

To avoid the trivial solution A = 0g, we add a quadratic 

constraint[4] on A as ATCA = 1, where C is a 6 x 6 con- 

straint matrix. The optimization problem (8) are formulated 

as a generalized eigenvalue system and has a solution as 

D’DA = ACA (9) 

where D = [dp, ,dp,,---,dp,]7. Here we use the constraint 
4dac — b* = 1 on A like [9]. Fitzgibbon et al. [9] proved that 

the system (9) produces exactly one positive eigenvalue \* 

which corresponds to an ellipse and we take its correspond- 

ing eigenvector A* as our solution. 

C. Discussion of the landmarks and segmentation 

Instead of translating the eye images into the landmarks 

and then converting the landmarks into segmentation in our 

method, an alternative way is to translate the eye image J into 

the segmentation S directly in the self-supervised learning 

framework. The change degrades the semantic segmentation 

performance of our method, which will be shown in exper- 

imental results in IV-F. Below, we discuss the reasons and 

the advantages of our method. 

First, we explicitly use the knowledge that pupils and iris 

are ellipse shapes by segmentation fitting. However, if we 

directly translate the eye image J to eye semantic segmen- 

tation map S, the model can only learn this knowledge from 

the real segmentation representation prior implicitly. 

Second, under the unsupervised manner, it introduces more 

noises by directly learning the semantic segmentation map 

S than learning the landmarks. Fig 4 shows some examples 

of the noisy K and the noisy S which are produced by EF, 

when using eye semantic segmentation map S and keypoint 

pictorial representation K as the representation prior form 

respectively. 

Last, it’s difficult to use a differentiable function ~(V) = 
S mapping keypoints to the segmentation maps like Eq. (1). 

Although we can use a neural network to simulate this, 

the introduction of a new neural network makes the back- 

propagation in training progress more difficult. 

IV. EXPERIMENTS 

We compared our method with others under both unsuper- 

vised and supervised protocols on both real (TEyeD [10]) 

and synthetic (UnitySeg) eye datasets. We also conducted 

ablation experiments to validate the effectiveness of the key 

components of our method and illustrate the effectiveness of 

feature disentanglements. 

A. Experimental settings 

1) Dataset: TEyeD is the world’s largest unified public 

data set of eye images collected by head-mounted devices. 

It contains more than 20 million carefully annotated images 

with 2D&3D landmarks, semantic segmentation, 3D eyeball 

annotation and the gaze vector and eye movement types. We 

randomly selected 126 videos containing 1.2M frames as 

training and validation set and 32 videos containing 500k 

frames as the test set. In our method, we did not use any of 

the labels of the training data but randomly selected another 

500k ground truth landmarks as the landmarks’ prior beyond 

the selected training and test set. 

UnitySeg is a synthetic eye image dataset created by us 

using UnityEyes [31], a tool to generate labelled synthetic 

eye images. UnitySeg contains 200k images of 100 different 

subjects. In our method, the landmarks’ prior was selected as 

the landmarks of 20 random subjects. The training set was 

selected as the unlabelled eyes images of another 60 random 

subjects. The test set was selected as another 20 subjects. 

Only eyelid margin and iris landmark are accessible from 

UnityEyes, we created the ground truth of segmentation by 

using fit methods mentioned in Sec III-B according to the 

provided landmarks. In this dataset, only the iris and sclera 

segmentations were investigated. 

2) Implementation Details: In our experiments, the de- 

tailed structures of the keypoint encoder E,, appearance 

encoder F,. the decoder G, the discriminator D and the 

regressor @ are presented in the supplemental materials. It 

is noted that other suitable networks can be substituted for 

the network we use. The proposed method was implemented 

using the deep learning toolbox PyTorch. The models are 

trained by optimizing the objective using RMSprop with a 

learning rate of 1-10~*. The batch size is 32 and the values
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Fig. 5. Visualized examples. Keypoint pictorial representation and semantic segmentation results on the TeyeD (left four cols) and UnitySeg (right three 

cols).These results are produced by our method directly without any additional labelled data. This figure is best viewed in color. 

TABLE I 

QUANTITIES RESULTS OF SELF-SUPERVISED METHODS (TOP THREE ROWS) AND SUPERVISED METHODS (OTHER ROWS) ON TEYED AND UNITYSEG. 
  

  

  

  

    

Dataset TEyeD UnitySeg 

Method paras mF1 mloU ToUGris) _ IoU(pupil) ToU(sclera) | paras mF1 mloU JoUGris) ToU(sclera) 

self-supervised 
CycleGAN 3.125M 0.884 0.792 0.766 0.802 0.642 3.122M 0.905 0.827 0.835 0.703 
LS?E-Seg 3.125M 0.938 0.884 0.890 0.913 0.789 3.122M 0.939 0.886 0.887 0.797 
LS?E-Seg* 3.125M 0.951 0.907 0.908 0.924 0.825 3.122M 0.949 0.897 0.903 0.809 
supervised 

RITnet 0.25M 0.934 0.877 0.882 0.891 0.782 — —_ — ss —— — — 
Ex (Seg) 3.126M 0.955 0.916 0.919 0.933 0.832 3.122M 0.935 0.878 0.866 0.788 
Resnet50 23.58M 0.960 0.923 0.922 0.925 0.859 23.57M 0.943 0.894 0.899 0.808 
Unetsmall 4.321M 0.964 0.932 0.933 0.947 0.863 4.32M 0.963 0.931 0.937 0.877 
Unet 17.268M 0.967 0.937 0.938 0.943 0.878 17.266M 0.966 0.936 0.942 0.886 
E;,(1mk) 3.125M 0.968 0.938 0.941 0.948 0.878 3.122M 0.964 0.932 0.937 0.878 
LS?E-Seg+E;, (Imk) 3.125M 0.971 0.944 0.944 0.953 0.889 3.122M 0.971 0.945 0.952 0.897 
LS?E-Seg*+E,(Imk) | 3.125M 0.973 0.948 0.948 0.956 0.894 3.122M 0.972 0.947 0.953 0.901   

of {Arec; Acons; Areg} ate {1,2,0.5} respectively. The Aad 

was initialized as 10 and was divided by a factor of 10 every 

5000 iterations during the training. We resize the images in 

TEyeD to 192x144 and images in UnitySeg to 200 «120 

as input resolution. 

3) Measurement: We evaluate the eye semantic segmen- 

tation performance of different methods and settings via loU 

(Intersection-Over-Union) scores and F1 scores. The IoU of 

class i €{background, iris, pupil, sclera} is define as: 

—_ [PiNGi| IoU; = = i on PUG (10) 

where P;, G; are respectively the region of class i from 

the ground truth and predicted mask. We report the mean 

IoU and mean F1 scores of four classes (iris, pupil, sclera, 

background) and three single classes (iris, pupil, sclera) IoU 

evaluated on the TEyeD and UnitySeg (without pupil IoU) 

in our experiments. 

B. Experimental results of eye segmentation 

1) Under unsupervised protocol: In unsupervised proto- 

col, we trained the proposed models with unlabelled data and 

get the predicted landmarks and segmentation maps directly. 

We compared with a CycleGAN [33] which is trained using 

unpaired training images and segmentation maps not in the 

training set. We did not compare with other unsupervised 

segmentation methods because it is difficult to ensure that 

the unsupervised segmented regions are the expected pupil, 

iris, and sclera. Table IV reports the mean IoUs and F1 on 

TEyeD and UnitySeg datasets using CycleGAN, LS?E-Seg 

and LS?E-Seg*. LS?E-Seg was trained with unlabelled train- 
ing images while LS?E-Seg* was trained with unlabelled 

training and test images. 

It is shown that Our LS?E-Seg and LS?E-Seg* outperform 
the CycleGAN on segmentation metrics. In addition, training 

our model using test images in a self-training manner can 

improve the segmentation results on the test dataset. 

We present the results of several supervised segmentation 

methods in the following Sec IV-B.2. The results show that 

our self-supervised methods LS?E-Seg and LS?E-Seg* are 

comparable to other supervised methods. 

We also evaluated our method qualitatively. We adopted 

the LS?E-Seg method on TEyeD and UnitySeg datasets and 

illustrated the learned landmarks and segmentations in Fig. 5. 

Our method can obtain accurate eye landmarks and eye 

segmentation maps in different conditions. 

2) Under supervised protocol: To investigate whether the 

proposed LS?E-Seg can further improve the supervised eye 

segmentation, we evaluated the methods under supervised 

protocol, where the annotations of landmarks or segmen- 

tations for the training images were used. We compared 

our self-supervised methods finetuned by training set with 

RITnet, Resnet50, Unet, Unetsmau, E,(Seg) and E,(Lmk). 

RITnet [5] is the champion method of the OpenEDS [12] 

2019 eye semantic segmentation challenge. We reproduce 

their method using the open source code. 

Resnet50 is a keypoint detector based on Resnet50 [13] 

trained by the MSE Loss. We convert the predicted keypoints 

into eye segmentation maps as the segmentation results. 

Unet is widely used in the medical image segmentation 

area and has been proven effective sufficiently. We trained
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the Unet model using the standard Cross Entropy loss. 

Unet, nan is created by reducing the channels of Unet to a 

quarter of the original model, so that the number of Unetsmau 

model’s parameters is closed to the encoder Ex. 

E, (Seg) is created by changing the last convolution layer 

of EF, from 1 channel to m channels for m part segmenta- 

tion.We trained £;,(Seg) using cross entropy loss and take it 

as the supervised eye semantic segmentation baseline. 

E,(Lmk) is a supervised model to generate a keypoint 

pictorial representation for eye images. We used the ground 

truth of keypoint pictorial representation to train E;, by the 

Mean Square Loss and obtain E;,(Lmk). We obtain eye 

semantic segmentation maps by the method mentioned in 

Sec. III-B as the segmentation results. 

We pre-trained our model LS?E-Seg and LS?E-Seg* with- 
out labels and finetuned the self-supervised models using 

the same way with £;,(Lmk). We named the two models as 

LS?E-Seg+E,(imk) and LS?E-Seg*+E;(Imk) respectively. 
Table IV reports the mean IoUs and Fl on TEyeD and 

UnitySeg datasets using supervised methods above. 

Our results show LS?E-Seg-pretrained model provides a 

good initialization for eye segmentation. When we fine-tuned 

the pre-trained model LS?E-Seg on labelled training set, we 

achieve higher mF1 and IoUs than E,(Lmk) trained from 

scratch. In addition, the results of LS?E-Seg* + E,(Lmk) is 

the highest in both two datasets. 

The results also show that E;,(Lmk) can achieve com- 

parable or better results than other segmentation methods 

with fewer parameters. It indicates that converting the learned 

keypoint pictorial representation to the segmentation map is 

an effective method for eye semantic segmentation. 

C. Discussion of the size of the prior set 

In Sec IV-B, we use 500k ground truth landmarks in 

TEyeD and 20k landmarks in UnitySeg as the landmarks’ 

prior set. To study the importance of the prior set size in 

the proposed method, we use the varying proportion of the 

original prior set to train LS?E-Seg. Table II show that our 

method retains most of the performance when decreasing the 

size of the prior set. 

TABLE II 

VARYING PROPORTION OF THE ORIGINAL PRIOR SET. 

THE RESULTS ARE REPORTED BY MIOU. 
  
  Data proportion | 1% 5% 10% 25% 50% 100% 

TEyeD 0.843 0.848 0.856 0.867 0.877 0.884 
UnitySeg 0.852 0.857 0.865 0.870 0.881 0.886     

D. Discussion of the proportion of labels 

To further show self-supervised pre-trained models are 

better than random initialization for supervised training, we 

finetuned our self supervised models with different propor- 

tions of training data and compared the results with other 

methods trained with the same labelled data from scratch. We 

present the mloU of different methods finetuned on different 

proportion of labels in Fig. 6. LS?E-Seg™ in Fig. 6 stands for 

the LS?E-Seg trained with 5% of our prior set. The results 

show that our LS?E-Seg-pretrained models can achieve better 
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Fig. 6. Comparison of different methods finetuned on different proportion 

of labels, evaluated on TEyeD. 

results with same labelled data or comparable results with 

less labelled data than supervised methods. For example, 

we use 5% data to finetune LS?E-Seg~ initialization (0.927) 

and obtain higher mloU than supervised method E&;,(Lmk) 

using 5% data (0.915). And we achieve the performance of 

F,(Lmk) (0.938) trained with 100% data using only 10% 

data with LS?E-Seg* (0.937). 

E. Ablation Study 

To investigate the effect of three key components in our 

method: keypoints’ representation prior (P), keypoint repre- 

sentation bottleneck (B), a symmetric architecture (S), we 

ablate one of these components at once. We set Agdy = 0 to 

remove keypoints’ representation prior and remove keypoint 

representation bottleneck by dropping functions ¢ and w. 

In addition, we change the symmetric architecture by not 

reconstruct [> in (5). 

Table III shows the effect of ablating one of these com- 

ponents on our experimental datasets. Our results show that 

the basic conditional auto-encoder method cannot finish the 

self-supervised eye segmentation task without the keypoint 

representation prior. In addition, the keypoint representation 

bottleneck can significantly import the segmentation perfor- 

mance (mloU: 0.764 — 0.884 on TEyeD and 0.831 — 0.886 

on UnitySeg). At last, the symmetric architecture is also 

useful for our segmentation model (mIoU: 0.878 — 0.884 

on TEyeD and 0.882 — 0.886 on UnitySeg). 

F. Comparison with direct segmentation map translation 

We analyze the reasons for not using eye segmentation 

maps as our prior to force Ey, to translate input images to 

segmentation map directly in Sec III-C. Table IV shows the 

results of direct segmentation map translation methods with 

and without keypoint bottleneck and the results demonstrate 

their disadvantages quantitatively. We find that the keypoint 

representation bottleneck does not improve the results of 

directly segmentation map translation methods, because we 

only make use of a neural network for mapping the keypoint 

coordinates to segmentation maps and the mapping is not as 

accurate as the fitting method in Sec. III-B.
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TABLE III 

ABLATION STUDY ON TEYED (THE TOP) AND UNITYSEG (THE 

BOTTOM). P: KEYPOINTS’ REPRESENTATION PRIOR. B: KEYPOINT 

BOTTLENECK. S: SYMMETRIC ARCHITECTURE. 
  
  

  
  
  

    
  
  
  

S B P mF1 mloU  JoUGris) IoU(pupil) — IoU(sclera) 

vv Vv | 0.937 0.884 0.890 0.923 0.789 
v Vv | 0.933 0.878 0.881 0.917 0.782 

v ¥v | 0.861 0.764 0.751 0.671 0.669 
v 0.480 0.338 0.329 0.186 0.197 

S B P mF1 mloU  JoUGris) IoU(pupil) — IoU(sclera) 

vv Vv | 0.938 0.886 0.887 — 0.797 
vv | 0.934 0.882 0.884 — 0.793 

v v | 0.905 0.831 0.783 — 0.737 
v 0.639 0.537 = 0.542 — 0.144 

TABLE IV 

COMPARISON WITH DIRECT SEGMENTATION MAP TRANSLATION. 

Datasets TEyeD UnitySeg 

Methods mF1 mloU | mFl mloU 

Ours 0.937 0.884 | 0.938 0.886 

Segmentation Map Translation | 0.894 0.813 | 0.909 0.838 

Segmentation Map Translation 0.901 0.824 | 0.912 0.842 

w/o keypoint bottleneck       

G. Appearance and Shape Disentanglement 

Given two arbitrary eye images J; and Jz, our model 

can generate a novel image with appearance from J; 

and eye shape from Jz. The new image is created by 

G(E.(l), Ex(12)). In the same way, we can create the 
new image G(Fa(I2), Ex (11)). Fig. 7 shows some examples 
combining one eye appearance with another eye shape. 

V. CONCLUSIONS AND FUTURE WORKS 

We presented a self-supervised eye semantic segmentation 

method which has two procedures: training a self-supervised 

landmark detector using a symmetrical auto-encoder archi- 

tecture and an eye keypoint prior, converting the detected 

landmark to the corresponding segmentation map. We have 

shown the effectiveness of our method on TEyeD and 

UnitySeg. This paper substitutes the unpaired keypoint prior 

for paired data and labels in the eye-parsing area. In the 

future, we would like to investigate more efficient methods 

to utilize the unpaired prior. 
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