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Abstract— Current AU datasets lack sufficiency and diversity
because annotating facial action units (AUs) is laborious. The
lack of labeled AU datasets bottlenecks the training of a
discriminative AU detector. Compared with AUs, the basic
emotional categories are relatively easy to annotate and they
are highly correlated to AUs. To this end, we propose an
Emotion-aware Contrastive Learning (EmoCo) framework to
obtain representations that retain enough AU-related informa-
tion. EmoCo leverages enormous and diverse facial images
without AU annotations while labeled with the six universal
facial expressions. EmoCo extends the prevalent self-supervised
learning architecture of Momentum Contrast by simultane-
ously classifying the learned features into different emotional
categories and distinguishing features within each emotional
category in instance level. In the experiments, we train EmoCo
using AffectNet dataset labeled with emotional categories.
The EmoCo-learned features outperform other self-supervised
learned representations in AU detection tasks on DISFA, BP4D,
and GFT datasets. The EmoCo-pretrained models that fine-
tuned on the AU datasets outperform most of the state-of-the-
art AU detection methods.

I. INTRODUCTION

Automatic facial behavior analysis has attracted increasing

attention due to its wide applications in human-computer

interaction. To study facial behavior comprehensively, Ek-

man and his colleagues proposed Facial Action Unit System

(FACS) [8] to objectively characterize facial actions. FACS

defines a unique set of about 40 discernible and non-

overlapping facial movements, which are called Action Units

(AUs). Automatic AU detection has become one of the

most significant domains of facial behavior analysis as it

is very promising in a wide range of applications, such as

affect analysis and mental health assessment. Recently, the

application of deep supervised learning methods provides

new approaches for representation learning and feature ex-

traction [18], [19], [37], [29], which tremendously promotes

the performance of AU detection.

However, these supervised AU detection methods deeply

rely on a large amount of AU annotations while AU datasets

in the literature are still constrained by the number of coded

AUs, samples, and subjects [36], due to the demanding

coding process. Usually, it takes 30 minutes or more for
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Fig. 1. Conventional vs emotion-aware contrastive learning. They both
encourage the positive samples to be close and the negative samples to be far
away from each other. The positive samples are two random augmentations
of an instance. (a) In conventional contrastive learning, the negative samples
are different instances in various emotional categories. (b) In emotion-aware
contrastive learning, the negative samples are different instances within the
same emotional category as the positive ones.

a specially trained coder to manually annotate an AU for a

one-minute video.

Annotating universal facial expressions is much easier

than annotating AUs, and AUs are highly relevant to univer-

sal facial expressions according to the psychological stud-

ies [15]. As discovered by psychologists, the understanding

of six prototypical facial expressions, i.e., anger, happiness,

fear, surprise, sadness, and disgust, are relatively common

across different cultures [7]. Therefore, the annotators for

facial expressions could be less professional than those for

AUs. Manually labeling facial expressions becomes efficient

via the crowding source strategy, which contributes to the

large-scale annotated facial expression datasets, e.g., Affect-

Net [24] and RAF-DB [17]. Besides, AUs depict finer facial

behaviors than the prototypical facial expressions categories.

Each facial expression can be characterized by a concrete

combination of AUs. For instance, the “anger” usually occurs

with the combination of AU4, AU5, and AU24.

To learn discriminative AU representations leveraging

large amount emotion-annotated images without AU la-

bels, we propose the Emotion-aware Contrastive Learning

(EmoCo) framework. EmoCo treats the prototypical facial

expressions as coarse categories and treats each image with

different AU combinations as a fine subclass within every

category. Inspired by the coarse-to-fine framework in [1],

EmoCo extends the prevalent self-supervised learning archi-

tecture of Momentum Contrast (MoCo) [11] by encouraging

the learned features to be classified into one of the emotional978-1-6654-3176-7/21/$31.00 ©2021 IEEE
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categories and to be instance-distinguishable within each

emotional category. Fig. 1 illustrates the key differences

between the emotion-aware contrastive learning in EmoCo

and the conventional one in MoCo [11]. They both encourage

the positive samples to be close and the negative samples

to be far away from each other. The positive samples are

two random augmentations of an instance. In conventional

contrastive learning, the negative samples are from different

instances in various emotional categories. The conventional

methods are hard to learn AU features because it may

focus on emotional-unrelated information, e.g., background,

identities, age, gender. While in emotion-aware contrastive

learning, to keep only the emotion-related information, the

learned features are classified into discrete emotional classes.

Simultaneously, the negative samples and the positive ones

within the same emotional category are contrasted. Thus, the

EmoCo-learned features implicitly capture the differences

among AUs combinations in different prototypical facial

expressions and are capable in representing fine-grained

facial behaviors.

The contributions of this work can be summarized as :

1. We leverage the emotion-annotated images to learn dis-

criminative AU representations, which alleviates the demands

for adequate manual AU annotations.

2. We propose the Emotion-aware Contrastive Learning

(EmoCo) framework. It regards AUs as finer descriptors of

facial behaviors than emotional categories and then adopts a

coarse-to-fine contrastive learning paradigm [1].

3. We conduct extensive experiments and validate the

advantages of the EmoCo-learned features and the finetuned

EmoCo models over other representations or state-of-the-art

supervised AU detection methods.

II. RELATED WORK

A. Facial Action Unit Detection

AU detection has been studied for decades and various

methods have been proposed. According to the composition

of training data, present AU detection methods can be

categorized into following groups:

Fully supervised methods construct AU detectors by learn-

ing from training examples with complete AU annotations

indicating ground truth. Zhao et al. [37] propose a locally

connected convolutional layer that learns region-specific AU

representations. EAC-Net [19] extracts features around facial

landmarks that are robust with respect to non-rigid shape

changes. JAA-Net [29] jointly estimates the location of

landmarks and the presence of action units. Li et al. [16]

and Corneanu et al. [6] incorporate graphical models in

their proposed frameworks for AU relationship reasoning

and modeling. These methods have achieved promising

performance on AU annotated datasets, e.g., DISFA [23],

BP4D [34]. However, they are overly dependent on the

annotated training data and lacking in generalizability.

To alleviate the demand for enormous and accurate AU

annotations, researchers try to use data with noisy, incom-

plete or none labels to learn AU representations. Previous

works for weakly supervised AU detection mainly focused on

utilizing face images with incomplete labels or noisy labels to

improve the AU detection accuracy. Wu et al. [33] proposed

to use Restricted Boltzmann Machine to model the AU

distribution, which is further used to train the AU classifiers

with partially labeled data. In [36], Zhao et al. propose a

weakly supervised clustering method for pruning noise labels

and train the AU classifiers with re-annotated data. Semi-

supervised methods leverage both labeled and unlabeled

data for AU detection. Niu et al. [25] propose a novel

multi-label co-regularization method for semi-supervised AU

recognition. Self-supervised methods adopt pseudo labels,

which are inferred from the structure of the unlabeled data

itself, as supervisory signals to learn AU representations.

Wiles et al. [32] and Li et al. [21] transform the source

frame to the target frame of the same person according to

the decoded displacement field from the learned features. Lu

et al. [22] use a triplet-based ranking approach that learns

to rank the frames based on their temporal distance from an

anchor frame.

Some other works propose to recognize AUs utilizing

training data from other related tasks or in a multi-task

manner. Peng et al. [26] utilize the prior knowledge of AUs

and emotions to generate pseudo AU labels for training from

facial images with only emotion labels. Zhang et al. [35] pro-

pose a knowledge-driven strategy for jointly training multiple

AU classifiers without any AU annotation by leveraging prior

probabilities on AUs. Results in [31], [27] prove that the

AU detection and facial expression recognition can promote

each other in the multi-task learning paradigm. Our proposed

EmoCo learns AU representations in a multi-task manner. It

focuses on separating emotional categories and learning fine-

grained AU features at the same time.

B. Contrastive Learning

Contrastive learning is a machine learning technique used

to learn the general features of data by teaching the model

which data points are similar or different. It can be applied

under both unsupervised and supervised settings.

When working with unlabeled data, contrastive learning

is one of the most powerful approaches in self-supervised

learning. Self-supervised contrastive learning models have

achieved an amazing performance even comparable to su-

pervised models attributed to its ability of instance feature

discrimination. SimCLR [4] defines positive pairs as two

augmentations of the same image and contrasts them with

other images of the same batch. MoCo [11] builds the

positive pairs in the same way, yet contrasts them with

negative samples stored in a dynamic dictionary produced

by a encoder with moving average parameters. SWAV [3]

contrasts the cluster assignments of different views instead

of contrasting features directly. BYOL [10] discards negative

samples and directly computes the similarity between pos-

itive pairs by introducing a slowly progressing momentum

encoder and a prediction head. On the basis of BYOL [10],

SimSiam [5] abandons momentum update and brings in

gradient stop.
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Fig. 2. EmoCo’s framework overview. Given an input image x, in the emotion classification branch, we encode its augmentation xq into feature q,
and then train an emotion classifier C to remove non-emotional information in the features. In the emotion-aware contrastive learning branch, we get a
positive feature k+ by encoding another augmentation xk of the input x. The negative features k− are taken from a multi-queue dictionary according to
the emotional label y of the input image. Each queue of the dictionary stores historical keys from the same emotion. Then, q, k+, and k− are intra-class
normalized into an emotion-specific space. The contrastive loss forces the positive pair (q,k+) to be close and the negative pair (q,k−) to be far away.

When working with labeled data, contrastive learning can

still show its effectiveness. CLIP [28] jointly trains a text

encoder and an image feature extractor over a contrastive

learning task that predicts which caption goes with which im-

age. Supervised Contrastive Loss [13] aims to leverage label

information more effectively than cross entropy, imposing

that normalized embeddings from the same class are closer

together than embeddings from different classes. ANCOR [1]

uses contrastive learning to learn features of the query set in

a few-shot learning setting.

III. METHOD

A. Overview

To learn discriminative AU representations without AU

annotations, we propose emotion-aware contrastive learning

(EmoCo) that adopts a coarse-to-fine contrastive learning

framework [1] leveraging expression-labeled images. EmoCo

regards each emotional category as a coarse class and the

instances with different AU combinations as fine subclasses,

considering the fact that AUs are finer descriptors of facial

behaviors than emotional categories.

Fig. 2 illustrates the outline of EmoCo. EmoCo learns the

features by extending the learning framework of MoCo [11],

which is a prevalent self-supervised learning framework that

learns instance-distinguishable features. Unlike MoCo [11],

EmoCo categorizes the features into different coarse emo-

tion classes and meanwhile encourages the learned features

to be distinguishable in instance level within each coarse

class. As can be seen in Fig. 2, EmoCo consists of two

branches, i.e., an emotion classification branch (upper) and

an emotion-aware contrastive learning branch (lower). In

the emotion classification branch, the learned features are

optimized under facial expression supervision. Therefore,

the features tend to represent the facial expression other

than irrelevant factors, e.g., the identities and ages. In the

emotion-aware contrastive learning branch, EmoCo learns

fine-grained AU features that can separate different instances

within each emotional category. By simultaneously minimiz-

ing the emotion-classifcation loss Lemo and the emotion-

aware contrastive loss Lcont in the two branches, EmoCo is

trained in an end-to-end manner by

min(λLemo + Lcont), (1)

where λ is the coefficient that balances the importance

of the emotion classification and emotion-aware contrastive

learning, whose details are presented below.

B. Emotion Classification

The emotion classification branch requires the learned

features to be categorized into one of the prototypical fa-

cial expressions under facial expression supervision, which

provides a coarse guidance for further AU representations

learning.

As shown in Fig. 2, given a training image x and its emo-

tion label y ∈ {0, 1, 2, · · · , C−1}, where C is the number of

emotional categories, we randomly augment x to get xq , and

then encode xq to obtain a 128-dim embedding q with the

online encoder Eq and the multiple layer perceptron(MLP)

hq . Eq is a CNN network with global average pooling on the

top and hq includes L2 nomalization of its output. Thus, q

is a unit vector. We use q to train the emotion classifier C, a

single-layer fc, to predict the emotional category of the input

image x. The parameters of the encoder Eq , MLP hq , and

emotion classifier C are optimized by minimizing Emotion-

classification Loss Lemo:

Lemo = − log
exp (wyq)

∑C−1
j=0 exp (wjq)

, (2)

where W ∈ R
C×128 is the weight matrix of the emotion

classifier C. wy is the y-th row of W and denotes the

parameters of the classifier C for the y-th emotional category.

The emotion-classification loss Lemo is minimized when

wy ·q is maximized and wj ̸=y ·q is minimized. This happens
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when q shares the identical direction with wy . And this is

the same for all images belonging to the emotion class y. We

could regard w̃y =
wy

||wy||
, the L2 normalization of wy , as

the prototype of the y-th emotional category. By minimizing

Lemo, the emotion classification branch forces the learned

features to gather around their corresponding prototype w̃y

and separates the whole feature space into several discrete

emotional categories, offering a coarse supervision to remove

the emotion-unrelated information in the features.

C. Emotion-aware Contrastive Learning

Although the emotion classification branch separates the

learned features into the coarse emotional categories, it

neglects the diversity of facial behaviors in each emotion.

Distinguishing the fine-grained facial behaviors is essen-

tial to represent the AUs. To learn fine-grained features,

EmoCo encourages the learned features to be instance-

distinguishable in each emotional category by enlarging the

distance between the features of two instances. However, the

features of different instances within each emotional category

are forced to be close in the emotion classification branch. It

is conflicting to simultaneously require the features to be far

away and to be close. To this end, we propose emotion-aware

contrastive learning with intra-class normalization [1].

During training, the emotion-aware contrastive learning

branch chooses the positive samples as the two augmenta-

tions of the same instance. The negative samples are different

instances from the same emotional category. Then, the intra-

class normalized positive samples are forced to be close and

the normalized negative ones are forced to be apart. Below,

we will introduce the process of sample selection and intra-

class normalization [1] in detail.

1) Positive Samples: As shown in Fig. 2, given an input

image x, we randomly augment x twice to get its two views

xq and xk to form the positive pair. xq is encoded by the

online encoder Eq and embedded by an MLP projection head

hq to get the positive query q. Correspondingly, we pass xk

through the momentum encoder Ek and momentum MLP hk

to compute the positive key k+. Ek and hk have the same

structure as their counterpart Eq and hq . Formally, denoting

the parameters of the sequential Ek → hk as θk, and those

of Eq → hq as θq , we update θk by:

θk := mθk + (1−m)θq. (3)

Here m ∈ [0, 1) is a momentum coefficient. θq is updated

by back-propagation.

2) Negative Samples: For query q, its negative sam-

ple is selected from the historical samples that belong to

the same emotional category as itself. EmoCo stores the

candidate negative samples by maintaining a dictionary to

save their encoded featured from the preceding batches.

In order to store negative samples from different emotion

classes separately, we extend the single-queue dictionary in

MoCo [11] to a multi-queue dictionary. As shown in Fig. 2,

samples from the different emotional categories are stored

in different queues. The stored keys in the dictionary are

enlarge

enlarge

intra-class

normalization

N (q) =
q− w̃

||q− w̃||
N (k−) =

k− − w̃

||k− − w̃||

N (k−)N (q)

Fig. 3. L2 normalization vs intra-class normalization. Top: After L2

normalized, minimizing contrastive loss Lcont will enlarge the angle α
between the negative pair (q,k−) of the same emotion class. Bottom: After
intra-class normalized, minimizing contrastive loss Lcont will enlarge the
angle β between the negative pair (N (q),N (k−)) in the emotion-sepcific
space and push (q,k−) towards the prototype w̃ in the original space.

progressively replaced. The samples in current input mini-

batch are enqueued according to their emotional category,

and the same quantity of oldest samples are popped. The

size of each queue in the dictionary is K, which is a hyper-

parameter and is much larger than the batch size.

3) Intra-class Normalization: EmoCo requires the pos-

itive samples to be close and the negative samples to be

faraway. However, since the negative samples are from the

same emotional category, they are also forced to be close

in emotion classification by (2). To relieve the conflict, we

introduce the intra-class normalization [1] to transform the

features q into a class-centered space as

N (q) =
q− w̃

||q− w̃||
, (4)

where w̃ is an L2-normalized weight vector corresponding

to one row of the emotion classifier C’s weight matrix W.We

can regard w̃ as the center or the prototype of an emotion

class. Then, we minimize the emotion-aware contrastive loss

Lcont in the intra-class normalized space as

Lcont = − log
e⟨N (q),N (k+)⟩/τ

e⟨N (q),N (k+)⟩/τ +
∑K−1

i=0 e⟨N (q),N (k−

i
)⟩/τ

,

(5)

where ⟨, ⟩ represents the inner product of two vectors, and τ
is the temperature.

Fig. 3 illustrates the advantage of intra-class normalization

over conventional L2 normalization. In L2 normalization (top

left), the query q and its negative sample k− are normalized

to unit vectors. By minimizing the contrastive loss, the angle

α between q and k is enlarged (top right). However, this is

in direct conflict with the interest of emotion classification

loss Lemo that tries to pull q and k− towards their prototype

w̃. In intra-class normalization(bottom left), by minimizing

the contrastive loss, the angle β between the intra-class

normalized feature N (q)and N (k−) is enlarged while q and
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k move towards their class prototype w̃, unifying the effects

of Lcont and Lemo at the same time.

IV. EXPERIMENTS

In this section, we validate the effectiveness of the pro-

posed EmoCo. First, we compare EmoCo with other state-

of-the-art AU detection methods. Then, we analyze the

components and parameters.

A. Datasets

We pretrain EmoCo on a facial expression labeled

dataset——AffectNet, and provide evaluations of the pre-

trained model on three widely used datasets, i.e., GFT [9],

DISFA [23], and BP4D [34].

1) AffectNet: AffectNet [24] is by far the largest database

of 7 facial expressions (including neutral) in the wild. We

utilize about 280,000 images which are annotated with seven

discrete facial expressions to pretrain EmoCo.

2) GFT: This dataset contains 96 participants in 32 three-

person groups. It has pre-divided the training set and the test

set. The moderate out-of-plane head motion and occlusion in

this dataset make AU detection challenging. We follow the

original train/test splits in [9] (about 108000 facial images

for training and 24600 images for valuation) and use 10 AUs

for evaluation. We perform three-time test on its validation

set and report the average performance to reduce the bias.

3) DISFA: It consists of 26 participants, whose AUs are

labeled with intensities from 0 to 5. In each frame, AUs with

intensities greater than 1 are considered as positive, while the

others are annotated as negative. Totally, about 130,000 AU-

labeled frames are obtained. We split the dataset into 3 folds

based on subject IDs and conduct 3-fold cross-validation to

evaluate model performance.

4) BP4D: It is a spontaneous facial AU dataset containing

328 videos from 41 subjects (23 females and 18 males). Each

subject is involved in 8 sessions, and their spontaneous facial

expressions are recorded. 12 AUs are annotated for all the

video frames, and there are about 140,000 images with AU

labels. A 3-fold cross-validation is conducted on the dataset.

B. Implementation Details

1) Data Preprocessing: For all the images used in the

experiments, we utilize an open source SeetaFace1 face

detector to detect the face rectangle and five facial landmarks.

All of the face images are aligned and cropped to 256×256
based on the detected landmarks. During training, the data

augmentation settings follows MoCo [11].

2) Optimizer: We use SGD for pretraining since EmoCo

doesn’t need a large-batch optimizer. We use a learning rate

of lr×BatchSize/256, with a base lr = 0.03. The learning

rate has a cosine decay scheduler. The weight decay is 0.0001

and the SGD momentum is 0.9.

The batch size is 256 by default, which is friendly to

typical 4-GPU implementations. We use batch normalization

(BN) synchronized across devices, following [11].

1https://github.com/seetaface/SeetaFaceEngine

3) Network Structure: We use ResNet-50 [12] as the

default backbone of the encoder. Our MLP projector consists

of 2 fully connected layers. Its output dim is 128 and its

hidden layer is 2048-d with a ReLU activation function. The

emotion classifier C is a single-layer fc.

4) Hyper-parameters: Unless specified, the size of each

queue in the dictionary is K = 65536, infoNCE temperature

is τ = 0.2, weight coefficient is λ = 1 for Lemo, and mo-

mentum coefficient is m = 0.999 for the momentum encoder

in our experiments. We perform 200-epoch pretraining in all

experiments.

C. Evaluation Protocols

We pretrain EmoCo on the AffectNet [24] dataset, and

evaluate the pretrained EmoCo’s performance under both

linear and finetuning protocol in each AU dataset.

Linear protocol. A linear protocol is to train a classifier

using frozen representations learnt by the pretrained encoder

on the training set of the target AU dataset and test the

classifier’s performance on the corresponding validation set.

Finetuning protocol. A finetuning protocol is to add an

AU classifier on the top of the pretrained encoder, finetune

them on the training set of the target AU dataset and test

their performance on the corresponding validation set.

Following previous AU detection methods, we use F1

score as performance indicator for all the experiments. We

also report the average F1 score of all AUs (denoted as Avg.).

D. Comparison with Other Methods

We compare EmoCo with the state-of-the-art supervised

and self-supervised AU detection methods under both linear

and finetuning protocol. Table I, II, III report the F1 score

of these methods on GFT [9], DISFA [23], and BP4D [34].

Comparision with self-supervised methods: The EmoCo

is compared with the state-of-the-art self-supervised meth-

ods: MoCo [11], Fab-Net [32], TAE [20], and Temporal

Ranking [22] under both linear and finetuning protocol.

Under linear protocol, the average F1-scores of AU clas-

sifier trained with frozen EmoCo-encoded features surpass

nearly all the self-supervised methods on three datasets (ex-

cept 1% reduction than TAE [20] on BP4D [34] dataset). By

combining auxiliary expression supervision and contrasitve

learning, EmoCo is able to extract more expressive features

and find more subtle differences of AUs than traditional self-

supervised methods.

Under finetuning protocol, EmoCo outperforms all the

listed self-supervised methods on three AU datasets. And

the advantage of EmoCo is the most apparent on GFT [9]

dataset, which is the most challenging dataset of the three.

The results demonstrate EmoCo’s generalizability and sta-

bility when working as pretrained model to be finetuned on

downstream AU detection tasks.

Comparision with supervised methods: We compare

EmoCo with the state-of-the-art supervised AU detection

methods, including DRML [37], EAC [19], JAA [29],

DSIN [6], and SRERL [16]. For fairness, we only make

comparison under finetuning protocol.
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TABLE I

F1 SCORES (IN %) OF 10 AUS BY THE PROPOSED EMOCO AND THE STATE-OF-THE-ART METHODS ON GFT DATASET. * MEANS THAT THE RESULTS

ARE REPORTED IN THE ORIGINAL PAPERS.

Methods/AU 1 2 4 6 10 12 14 15 23 24 Avg.

Supervised
AlexNet [14]* 44.0 46.0 2.0 73.0 72.0 82.0 5.0 19.0 43.0 42.0 42.8
ResNet-50 [12] 23.5 37.8 3.5 79.1 70.1 82.1 20.9 11.7 49.1 40.3 41.8

Self-
supervised

MoCo [11] 21.7 38.1 10.2 74.7 79.1 80.9 25.9 30.5 49.3 45.2 45.6
MoCo(finetune) [11] 45.3 48.2 20.3 80.7 78.8 78.1 22.6 46.0 53.9 50.3 52.4

Fab-Net [32] 44.4 42.3 9.4 60.6 68.7 70.4 8.7 1.7 5.5 20.8 33.3
Fab-Net(finetune) [32] 33.3 52.6 12.4 80.2 75.6 82.7 16.6 37.1 46.1 46.6 48.3

TAE [20]* 46.3 48.8 13.4 76.7 74.8 81.8 19.9 42.3 50.6 50.0 50.5
TAE(finetune) [20] 30.5 46.4 20.0 77.7 79.9 83.0 18.9 44.5 47.9 47.5 49.6

Temporal Ranking [22] 19.5 36.1 5.4 63.0 69.8 68.2 11.2 21.6 39.5 36.0 37.0
Temporal Ranking(finetune) [22] 58.8 56.8 33.2 72.5 76.2 80.8 19.9 46.8 55.2 47.3 54.7

Ours
EmoCo 51.8 42.9 22.9 79.8 77.0 85.2 23.4 42.5 55.4 49.6 53.0

EmoCo(finetune) 65.9 55.9 40.7 83.1 75.1 81.4 21.3 48.5 58.0 56.5 58.6

TABLE II

F1 SCORE (IN %) OF 8 AUS BY THE PROPOSED METHOD AND THE STATE-OF-THE-ART METHODS ON THE DISFA DATASET. * MEANS THAT THE

RESULTS ARE REPORTED IN THE ORIGINAL PAPERS.

Methods/AU 1 2 4 6 9 12 25 26 Avg.

Supervised

DRML [37]* 17.3 17.7 37.4 29.0 10.7 37.7 38.5 20.1 26.7
EAC [19]* 41.5 26.4 66.4 50.7 80.5 89.3 88.9 15.6 48.5
JAA [29]* 43.7 46.2 56.0 41.4 44.7 69.6 88.3 58.4 56.0
DSIN [6]* 42.4 39.0 68.4 28.6 46.8 70.8 90.4 42.2 53.6

SRERL [16]* 45.7 47.8 59.6 47.1 45.6 73.5 84.3 43.6 55.9

Self-
supervised

MoCo [11] 13.8 16.4 43.8 53.1 37.1 74.2 75.5 43.7 44.7
MoCo(finetune) [11] 31.1 27.7 59.8 40.3 35.0 70.1 84.6 60.8 51.2

Fab-Net [32]* 15.5 16.2 43.2 50.4 23.2 69.6 72.4 42.4 41.6
Fab-Net(finetune) [32] 20.8 20.3 54.1 46.9 45.5 71.2 82.7 51.7 49.1

TAE [20]* 21.4 19.6 64.5 46.8 44.0 73.2 85.1 55.3 51.5
TAE(finetune) [20] 25.7 20.5 51.8 42.1 37.1 68.9 86.2 48.4 47.6

Temporal Ranking [22]* 10.8 20.7 43.3 37.6 12.2 68.7 62.9 46.2 37.8
Temporal Ranking(finetune) [22] 31.6 27.5 61.1 53.4 35.8 70.3 84.2 59.4 52.9

Ours
EmoCo 34.3 31.9 63.9 52.5 44.0 77.0 78.3 44.2 53.3

EmoCo(finetune) 42.7 41.0 66.3 45.1 50.9 75.5 88.9 58.6 58.6

TABLE III

F1 SCORE (IN %) OF 12 AUS BY THE PROPOSED METHOD AND THE STATE-OF-THE-ART METHODS ON THE BP4D DATASET. * MEANS THAT THE

RESULTS ARE REPORTED IN THE ORIGINAL PAPERS.

Methods/AU 1 2 4 6 7 10 12 14 15 17 23 24 Avg.

Supervised

DRML [37]* 55.7 54.5 58.8 56.6 61.0 53.6 60.8 57.0 56.2 50.0 53.9 53.9 56.0
EAC [19]* 39.0 35.2 48.6 76.1 72.9 81.9 86.2 58.8 37.5 59.1 35.9 35.8 55.9
JAA [29]* 47.2 44.0 54.9 77.5 74.6 84.0 86.9 61.9 43.6 60.3 42.7 41.9 60.0
DSIN [6]* 51.7 40.4 56.6 76.1 73.5 79.9 85.4 62.7 37.3 62.9 38.8 41.6 58.9

SRERL [16]* 46.9 45.3 55.6 77.1 78.4 83.5 87.6 63.9 52.2 63.9 47.1 53.3 62.1

Self-
supervised

MoCo [11] 41.9 28.7 40.8 75.6 70.8 82.7 85.8 62.4 31 54.2 31.3 37.6 53.6
MoCo(finetune) [11] 40.8 28.9 41 72.2 71 81.4 84.4 62 35.7 54.8 37.1 39.8 54.1

Fab-Net [32]* 43.3 35.7 41.6 72.9 63.0 75.9 83.5 57.7 26.5 48.2 33.6 42.4 52.0
Fab-Net(finetune) [32] 45.8 36.2 47.6 76.1 73.3 81.3 85.6 60.6 34.1 58.2 39.7 41.7 56.7

TAE [20]* 47.0 45.9 50.9 74.7 72.0 82.4 85.6 62.3 48.1 62.3 45.9 46.3 60.3
TAE(finetune) [20] 47.4 38 48.5 74.5 71.1 82.8 85.6 64 41.7 61.8 43.2 40.7 58.3

Temporal Ranking [22]* 35.2 25.5 30.2 71.3 69.6 81.3 83.3 59.1 30.3 56.1 27.0 33.4 50.2
Temporal Ranking(finetune) [22] 48.4 47 50.8 74.7 75.2 84.4 85.6 57.5 36.7 61.6 44.2 43.8 59.1

Ours
EmoCo 45.4 30.5 55.5 76.1 75.7 84.4 87.6 66.6 39.6 59.1 41.3 49.8 59.3

EmoCo(finetune) 50.2 44.7 53.9 74.8 76.6 83.7 87.9 61.7 47.6 59.8 46.9 54.6 61.9

After finetuned, EmoCo achieves better performance than

almost every supervised method, even the methods like

JAA [29] and EAC [19] using facial landmarks as as-

sistance to learn region-specific representations. Although

SRERL [16] on BP4D dataset is an exception, it exceeds

EmoCo by merely 0.2%, for the reason that SRERL [16]

uses a larger backbone (VGG19 [30]) than EmoCo (ResNet-

50 [12]) and uses a GCN to estimates the relationships

among AUs. Apart from performance improvement, the fine-

tuning of EmoCo is faster than directly training supervised

methods. EmoCo converges in less than 5 epochs when being

finetuned. The performance of EmoCo under linear protocol

is even comparable to those supervised methods.

E. Ablation Study

We evaluate the effects of EmoCo’s key components,

including finetuning F , the multi-queue dictionary MQ,

contrastive loss Lcont, emotion-classification loss Lemo, and
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TABLE IV
ABLATION STUDY OF THE KEY COMPONENTS OF EMOCO.

F : FINETUNING; MQ: MULTI-QUEUE DICTIONARY; Lcont :

CONTRASTIVE LOSS; Lemo : EMOTION CLASSIFICATION LOSS; N :

INTRA-CLASS NORMALIZATION.

F MQ Lcont Lemo N f1

GFT [9]

− ✓ ✓ ✓ ✓ 53.0
− − ✓ ✓ ✓ 48.6
− ✓ ✓ ✓ − 47.5
− ✓ ✓ − − 46.2
− ✓ − ✓ − 47.6
✓ ✓ ✓ ✓ ✓ 58.6

✓ − ✓ ✓ ✓ 57.7
✓ ✓ ✓ ✓ − 57.3
✓ ✓ ✓ − − 53.3
✓ ✓ − ✓ − 52.3

DISFA [23]

− ✓ ✓ ✓ ✓ 53.3
− − ✓ ✓ ✓ 50.2
− ✓ ✓ ✓ − 48.4
− ✓ ✓ − − 41.4
− ✓ − ✓ − 47.6
✓ ✓ ✓ ✓ ✓ 58.6

✓ − ✓ ✓ ✓ 57.2
✓ ✓ ✓ ✓ − 57.0
✓ ✓ ✓ − − 54.0
✓ ✓ − ✓ − 53.6

BP4D [34]

− ✓ ✓ ✓ ✓ 59.3
− − ✓ ✓ ✓ 57.8
− ✓ ✓ ✓ − 56.2
− ✓ ✓ − − 55.0
− ✓ − ✓ − 58.5
✓ ✓ ✓ ✓ ✓ 61.9

✓ − ✓ ✓ ✓ 60.6
✓ ✓ ✓ ✓ − 60.7
✓ ✓ ✓ − − 59.6
✓ ✓ − ✓ − 58.9

intra-class normalization N [1]. F stands for whether to

finetune pretrained EmoCo on target datasets. MQ means

each queue is for per class, otherwise one queue is for

all classes. Lcont stands for whether to use emotion-aware

contrastive loss when pretraining. Lemo stands for whether to

use coarse emotion supervision. And N denotes using intra-

class normalization [1] or L2 normaliztion. Table IV reports

the F1 score of EmoCo on three datasets when applying

different components. We conclude the observations below.

Firstly, EmoCo with intra-class normalization [1] effec-

tively combines coarse emotion supervision and emotion-

aware contrastive learning to learn fine-grained AU repre-

sentations. When utilizing Lemo alone, EmoCo reduces to a

plain emotion classfication network. Similarly, when apply-

ing Lcont alone, EmoCo reduces to multi-queue MoCo [11].

Each of them either only focuses on classifying emotional

categories or forces the model to learn differences in the

background or something emotion-unrelated, resulting in

the peformance reduction. Besides, without intra-class nor-

malization, directly combining Lemo and Lcont sometimes

performs even worse than only using Lemo, proving the ef-

fectness of intra-class normalization that relieves the conflict

between Lemo and Lcont from the negative side.

Secondly, choosing negative samples from the same emo-

tion class of the positive samples is more helpful to EmoCo

than randomly sample selection. In this way, EmoCo in-

troduces hard negative samples and encourages contrastive

learning to find more fine-grained emotional differences

between images.

Thirdly, after finetuned on target dataset, the performance

Fig. 4. F1-scores of EmoCo with different λs which balance emotion-
classification loss Lemo and emotion-aware contrastive loss Lcont. N

stands for intra-class normalization. With N , the performance of EmoCo is
stable when λ varies.

of EmoCo can be dramatically improved.

F. Balance of Lemo and Lcont

When training EmoCo, we adopt a weight coefficient

λ to balance the emotion-classification loss Lemo and the

emotion-aware contrastive loss Lcont. In this section, we

explore the effects of different λ on the performance of

EmoCo. The results are showed in Fig. 4. By analyzing the

experimental results, we find that: (a) The value of λ has little

influence on the performance of EmoCo under finetuning

protocol, no matter EmoCo has an intra-class normaliza-

tion [1] module or not. (b) The performance of EmoCo with

intra-class normalization [1] under linear protocol is more

stable than the one with L2 normalization. (c) EmoCo with

intra-class normalization [1] achieves superior performance

without special search on λ. We attribute this to the fact that

intra-class normalization [1] could integrate the prototype of

each emotional category w̃ into the contrastive loss, which

adaptively adjusts the influence between Lemo and Lcont.

G. Visualization

Fig. 5. Visualization of the learned features. Top: features with emotion-
supervision only; Bottom: features of EmoCo; Left: Colors indicate 7
emotional categories; Right: Colors indicates whether AU6 exists.

In this section, we visualize the learned features of EmoCo

and the emotion-supervised baseline. The left half of Fig. 5

shows the feature distribution of the seven emotional cate-

gories. The features of both models are separated into seven
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classes, while the emotion class boundaries of EmoCo’s

features are less clear. The right half of Fig. 5 shows the

intra-class feature distribution within an emotion class. The

features of EmoCo (lower) are more separable than the fea-

tures of expression-supervised baseline. Fig. 5 demonstrates

that the EmoCo-learned feature are more AU discriminative

than the features learned with emotion only.

V. CONCLUSIONS

In this work, we propose an Emotion-aware Contrastive

Learning framework to learn discriminative AU represen-

tations leveraging large-scale expression dataset. Regarding

AUs as finer descriptors of facial behaviors than emotional

categories, EmoCo adopts a coarse-to-fine contrastive learn-

ing framework [1] to separate emotional categories and

distinguish instance-level features simultaneously. EmoCo

achieves comparable performance to the state-of-the-art AU

detection methods under both linear and finetuning protocol.

We will modify this framework into a self-supervised version

combining deep cluster [2] and a novel normalization method

in the future.
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