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SIFT descriptors on predetermined facial landmarks
10-fold with disjoint training and test sets
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Boosting × × × × × ×
TW-SVM [6] × × × × ×
Self-paced learning [7] × × × × × ×
RO-SVM [8] × × × × × ×
Co-training [9] × × × ×
Lap-SVM [2] × × × × ×
DAM [3] × ×
CPMs

Multiple 
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Indentify 
easy/hard

Unlabeled
data

Different 
distribution

Smoothness
assumption

Non-parallel 
hyperplane

Progressive
labeling

Confident classifiers
(w+, w-), or wy to confidently predict on positive and neg-
ative samples, respectively

×

Previous work

Alternating algorithm for training confident classifiers

Single hyperplane
Perform well on easy samples, e.g., high intensity 
AUs, frontal head pose or on particular subjects
Perform badly on hard samples, e.g. , subtle AUs

Easy-to-hard strategy

Address specific and known sources
- E.g. subtle AUs, head pose, individual differences [1]
Semi-supervised learning methods (SSL) [2]
- Smoothness/Cluster/Manifold assumptions on rela-
tionships between input and label space
- Not suitable for AU
Transfer learning methods [3,4,5]
- Only individual differences
- Absence of spatial-temporal smoothness
- Less efficient than CPM

Quasi-semi-supervised (QSS) learning
Generalization on unseen test subjects
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A person-specific classifier wt for a test subject
Quasi-semi-supervised (QSS) classifier

Objective (4)

Effectiveness of spatial-temporal smoothness
Identify easy and hard samples (1)

easy: (w+, w-) have same predictions
hard: (w+, w-) have different predictions

Objective (2)

Relabeling strategies
Holistic relabeling: Relabel all the hard samples
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Localized relabeling: Relabel part of the hard samples

Comparison with alternative methods

(w+, w-) might not generalize well due to 
mismatch between training and test.
iCPM jointly learns (w+, w-) and QSS.

iCPM on a synthetic example

Datasets
GFT [10]: 50 2-min spontaneous videos from 50 participants  
BP4D [11]: 328 spontaneous videos from 41 participants  
DISFA [12]: 27 spontaneous videos from 27 participants  
Metric
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baseline methods (SVM, Adaboost), SSL (Laplacian SVM [2]), 
transfer learning methods (DAM [3], MDA [4], GFK [5])
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To get the person-specific classifier wt

Virtual labels for easy sampels from (w+, w-) 
Propagate virtual labels from easy to hard test samples 
under semi-supervided manner.
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