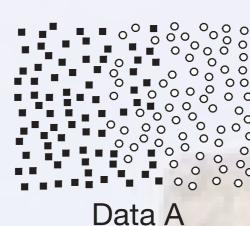

Problem

CCV15

- Only individual differences
- Absence of spatial-temporal smoothness
- Less efficient than CPM
- [1] W.-S. Chu, et al. Selective transfer machine for personalized facial action unit detection. CVPR 2013.
- [2] S. Melacci, et al. Laplacian support vector machines trained in the primal, JMLR, 12:1149–1184, 2011.
- 3] Duan L, et al. Domain adaptation from multiple sources: A domain-dependent regularization approach, TNNLS, 23(3): 504-518, 2012.
- [4] B. Gong, et al. Geodesic flow kernel for unsupervised domain adaptation, CVPR 2012.
- [5] Q. Sun, et al. A two-stage weighting framework for multi-source domain adaptation, NIPS 2011.

Confidence Preserving Machine (CPM)



Confident classifiers

- Objective (2)

 $\min_{\mathbf{w}_{y}, \mathcal{E}}$ $y \in \{+, -$

△ Localized relabeling: Relabel part of the hard samples

• Alternating algorithm for training confident classifiers

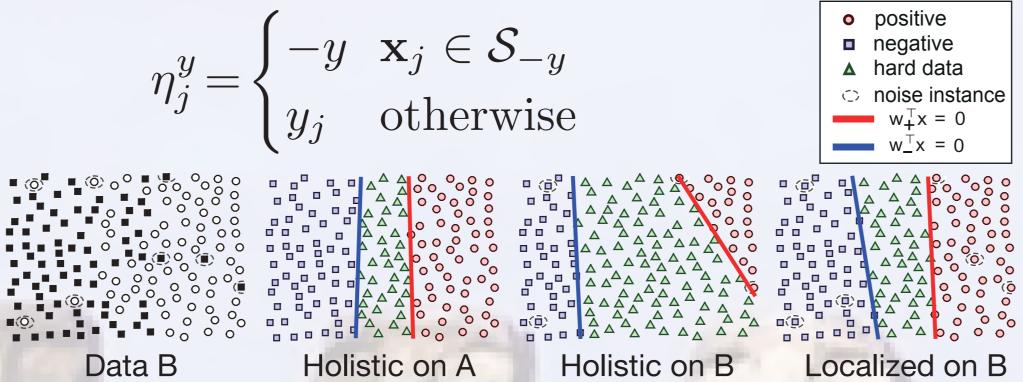
2: repeat

- Update relabels $\eta_i^+, \eta_i^- \forall j \in \mathcal{H};$ until convergence or reach maximum #iteration

Confidence Preserving Machine for Facial Action Unit Detection

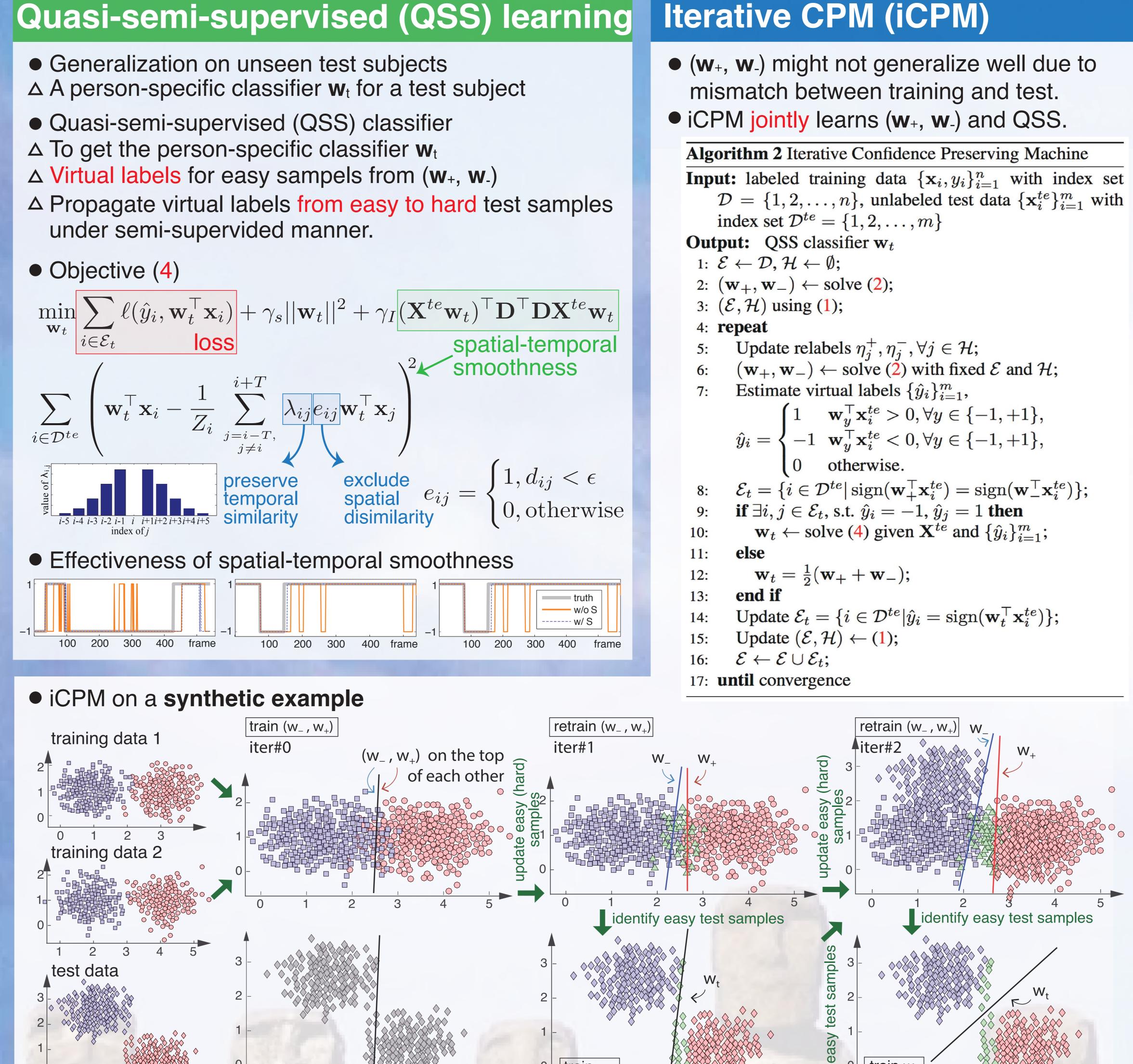
Jiabei Zeng¹, Wen-Sheng Chu², Fernando De la Torre², Jeffrey F. Cohn^{2,3}, and Zhang Xiong¹

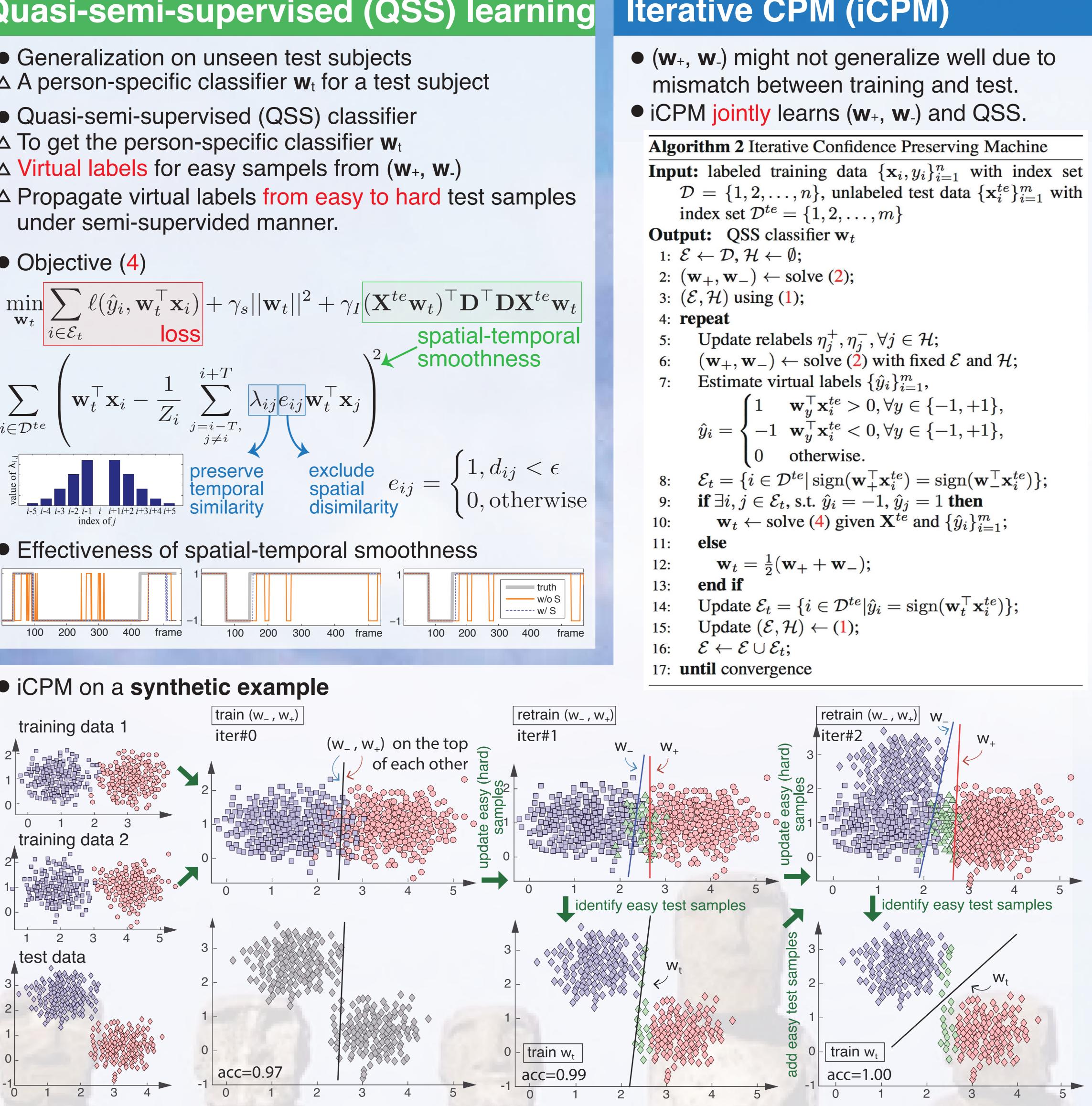
• $(\mathbf{w}_{+}, \mathbf{w}_{-})$, or \mathbf{w}_{v} to confidently predict on positive and negative samples, respectively


 Identify easy and hard samples (1) $\Delta \mathcal{E}$ easy: (**w**₊, **w**₋) have same predictions $\Delta \mathcal{H}$ hard: (**w**₊, **w**₋) have different predictions

$$\begin{aligned} ||\mathbf{w}_{y}||^{2} + \sum_{i} \xi_{i_{y}}^{2} \quad \text{s.t.} \quad \mathbf{y}_{i} \mathbf{w}_{y}^{\top} \mathbf{x}_{i} \geq 1 - \xi_{i_{y}}, \forall i \in \mathcal{E}, \\ \mathbf{y}_{i}^{y} \mathbf{w}_{y}^{\top} \mathbf{x}_{i} \geq 1 - \xi_{i_{y}}, \forall i \in \mathcal{H} \\ \mathbf{y}_{i}^{y} \mathbf{w}_{y}^{\top} \mathbf{x}_{i} \geq 1 - \xi_{i_{y}}, \forall i \in \mathcal{H} \\ \end{aligned}$$

Relabeling strategies


 \triangle Holistic relabeling: Relabel all the hard samples


$$\eta_j^y = -y, \forall \mathbf{x}_j \in \mathcal{H}.$$

Algorithm 1 Train confident classifiers

- **Input:** Data $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$ and its index set \mathcal{D} = $\{1,2,\ldots,n\}$
- **Output:** Confident classifiers (w_+, w_-) , easy samples \mathcal{E} and hard samples \mathcal{H}
- : Initialization: $\mathcal{E} \leftarrow \mathcal{D}; \mathcal{H} \leftarrow \emptyset;$
- $(\mathbf{w}_+, \mathbf{w}_-) \leftarrow \text{solve (2)}$ with fixed \mathcal{E} and \mathcal{H} ;
- Update easy and hard samples $(\mathcal{E}, \mathcal{H})$ using (1);

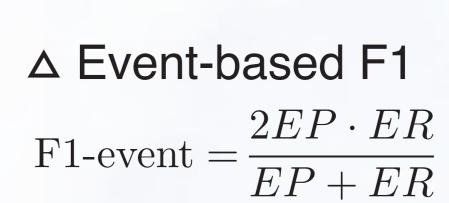
Comparison with alternative methods

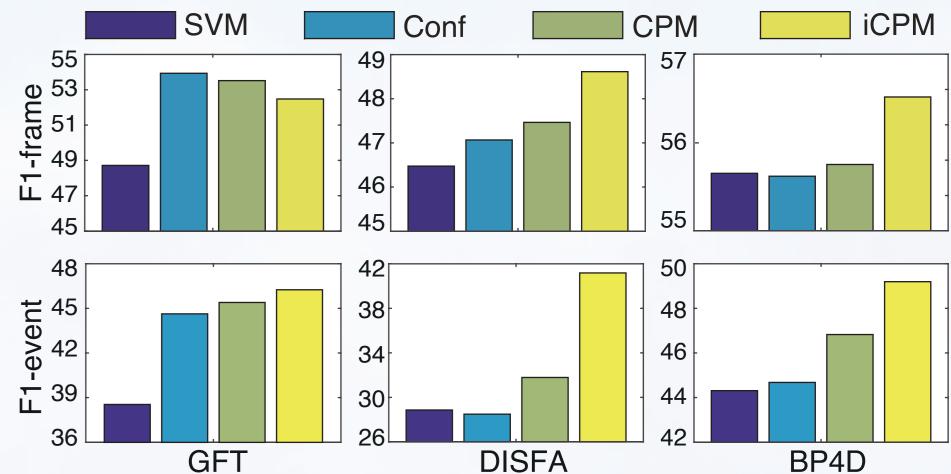
and the second se								
	Multiple classifiers	Indentify easy/hard	Unlabeled data		Smoothness assumption		Progressive labeling	[6] R. Khemchandani, et al. Twin support vector machines for pattern classification, TPAMI,
Boosting	\checkmark	×	×	×	×	×	×	29:905-910, 2007.
TW-SVM [6]	\checkmark	×	×	×	×	\checkmark	×	[7] M. P. Kumar, et al. Self-paced learning for laten
Self-paced learning []	7] ×	\checkmark	×	×	×	×	×	variable models, NIPS 2010.
RO-SVM [8]	×	\checkmark	×	×	×	×	×	[8] Y. Grandvalet, et al. Support vector machines
Co-training [9]	\checkmark	×	\checkmark	×	×	×	\checkmark	with a reject option, NIPS 2009.
Lap-SVM [2]	×	×	\checkmark	×	\checkmark	×	×	[9] A. Blum, et al.Combining labeled and unlabeled
DAM [3]	\checkmark	×	\checkmark	\checkmark	\checkmark	×	\checkmark	
CPMs	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	data with co-training, CoLT 1998.
			and the second second	States of the local division in the local di	Contraction of Contract			

Experiments

Settings

- △ SIFT descriptors on predetermined facial landmarks
- \triangle 10-fold with disjoint training and test sets


• Datasets


- \triangle GFT [10]: 50 2-min spontaneous videos from 50 participants
- △ BP4D [11]: 328 spontaneous videos from 41 participants
- △ DISFA [12]: 27 spontaneous videos from 27 participants

Metric

• Evaluate CPM componants

△ Frame-based F1 $2P \cdot R$ F1-frame = $\frac{21}{D}$ P+R

Comparisons

△ baseline methods (SVM, Adaboost), SSL (Laplacian SVM [2]), transfer learning methods (DAM [3], MDA [4], GFK [5])

Table 1. Comparison on GFT. ("H" stands for an extra post-processing with HMM)															
	F1-frame							F1-event							
AU	SVM H	Ada H	Lap H	DAM	MDA	GFK	iCPM	SVM H	Ada H	Lap H	DAM	MDA	GFK	iCPM	
1	30.3 16.8	20.3 15.4	12.1 16.4	1.7	29.2	30.9	29.9	20.3 17.9	15.3 28.2	5.4 9.7	2.1	21.3	21.6	27.1	
2	25.6 18.4	14.8 21.8	26.0 19.3	5.3	25.8	29.3	25.7	20.2 21.1	12.2 30.7	18.2 16.6	4.7	21.3	22.5	24.8	
6	66.2 66.4	62.1 47.3	2.7 40.7	58.0	63.8	66.1	67.3	49.1 56.8	47.5 43.4	4.4 37.5	50.0	47.0	50.2	56.8	
7	70.9 72.2	69.6 50.0	24.0 50.3	66.0	66.6	72.2	72.5	50.4 59.8	50.7 44.0	21.6 48.3	41.7	49.2	52.1	60.1	
10	65.5 65.5	65.5 43.7	56.7 61.2	64.9	65.4	67.5	67.0	50.2 57.8	50.2 46.6	46.5 57.5	53.1	51.6	54.3	58.1	
12	74.2 75.9	73.0 54.5	64.8 69.0	72.9	71.9	72.7	75.1	56.3 65.0	54.7 59.9	54.9 64.4	61.9	52.0	54.3	65.0	
14	79.6 78.1	77.7 59.2	76.7 51.2	79.5	74.0	79.8	80.7	63.8 70.8	62.3 59.9	81.5 61.2	64.6	63.7	64.8	74.7	
15	34.1 17.5	20.3 20.5	19.3 13.9	1.4	31.8	31.7	43.5	28.1 20.1	17.7 41.8	15.9 20.2	2.3	25.4	26.8	32.2	
17	49.2 50.6	48.2 38.6	42.5 21.2	34.6	47.4	48.9	49.1	42.9 53.1	37.1 38.5	36.4 25.9	29.6	41.4	41.3	52.3	
23	28.3 29.8	19.4 20.7	27.1 25.1	2.8	26.0	26.7	35.0	27.7 35.9	16.8 36.7	9.5 19.5	4.4	26.7	27.1	25.9	
24	31.9 21.0	22.3 25.8	25.7 16.9	3.0	31.8	33.0	31.6	30.3 21.8	20.8 26.4	21.7 13.9	4.9	30.0	30.5	31.8	
Av.	48.7 46.6	44.8 36.1	32.8 35.0	35.5	48.5	48.6	52.5	38.6 43.7	35.0 41.5	27.3 34.1	29.0	39.1	38.9	46.3	
Table 2. Comparison on BP4D. ("H" stands for an extra post-processing with HMM)															
ATT	F1-frame									F1-ev	ent				
AU	SVM H	Ada H	Lap H	DAM	MDA	GFK	iCPM	SVM H	Ada H	Lap H	DAM	MDA	GFK	iCPM	
1	46.0 43.4	41.5 37.7	43.8 29.0	38.2	39.6	42.4	46.6	29.2 38.1	29.8 41.7	29.2 27.8	26.7	30.5	29.7	35.3	
2	38.5 38.4	12.4 25.5	17.6 27.8	27.3	37.0	35.8	38.7	29.3 36.1	12.9 32.4	24.8 27.1	12.3	28.2	28.9	32.5	
4	48.5 41.6	39.4 30.4	27.2 26.1	29.1	45.7	47.3	46.5	33.5 37.4	28.9 28.3	30.5 26.5	22.3	32.8	32.8	39.4	
6	67.0 62.0	71.7 61.2	71.5 26.1	67.5	69.2	71.2	68.4	53.7 37.4	54.4 58.5	53.7 26.5	55.4	52.9	54.4	60.9	
7	72.2 56.5	74.7 53.7	71.6 52.2	72.6	70.2	72.5	73.8	59.0 55.3	55.2 49.2	56.2 57.6	61.1	58.4	54.9	62.1	
10	72.7 54.6	75.7 62.1	72.8 55.3	74.4	71.0	74.2	74.1	61.3 52.8	59.3 67.8	60.7 60.6	68.6	57.5	59.7	65.1	
12	83.6 65.4	84.3 62.6	84.3 55.3	76.4	81.8	83.9	84.6	62.5 52.8	63.9 60.8	64.2 60.6	60.8	59.9	65.6	71.4	
14	59.9 49.2	61.0 50.9	62.6 26.3	59.9	57.8	57.2	62.2	49.5 46.3	51.7 56.7	51.9 26.9	53.3	50.2	48.7	55.9	
15	41.1 39.9	30.6 30.4	35.2 25.5	15.9	41.4	40.6	44.3	33.7 39.0	24.4 39.0	25.4 25.4	12.7	28.2	31.1	37.4	
17	55.6 57.8	56.6 47.8	59.1 46.3	52.9	50.1	55.4	57.5	46.0 56.1	44.0 51.5	44.0 41.7	51.5	39.6	44.0	49.9	
23	40.8 39.4	33.0 32.8	33.6 27.6	3.9	36.2	39.9	41.7	36.4 44.0	28.2 41.4	27.2 22.2	5.8	30.7	33.3	41.9	
24	42.1 19.3	34.2 26.7	40.5 16.9	4.9	41.1	41.7	39.7	37.7 16.0	30.9 35.7	34.8 13.8	3.6	35.4	35.6	38.7	
Av.	55.7 47.3	51.3 43.5	54.7 36.9	42.6	53.4	55.2	56.5	44.3 44.8	40.3 46.9	41.9 36.5	36.2	42.0	43.2	49.2	
Table 3. Comparison on DISFA. ("H" stands for an extra post-processing with HMM)															
	F1-frame						F1-event								
AU	SVM H	Ada H	Lap H	DAM	MDA	GFK	iCPM	SVM H	Ada H	Lap H	DAM	MDA	GFK	iCPM	
1	26.5 14.4	17.1 12.4	13.1 16.2	7.9	19.0	23.2	29.5	14.5 17.6	16.1 21.2	9.6 11.6	5.4	11.6	18.1	18.7	
2		20.1 10.5			9.5	16.3	24.8		17.3 17.0			16.4		19.2	
4		59.8 26.4			59.3	60.3	56.8		32.5 27.7			28.6	28.3	41.8	
6		31.9 22.1			21.1	41.9	41.7	•	28.3 25.9	•			30.6	36.9	
9	1	29.3 17.4			7.6	30.3	31.5		22.7 39.9				14.6	31.7	
12		69.4 46.3			63.1	69.6	71.9	•	51.9 61.6					56.6	
25		83.9 70.5				80.0	81.6		38.0 58.8						
26		59.6 50.5	•		51.1	54.6	51.3		38.7 49.5					47.7	
Av.		46.6 32.0				47.0	1	•	30.7 37.7						
	F Cohn		1				1								

] J. F. Cohn, et al. Spontaneous facial expression in a small group can be automatically measured: An initial demonstration, Behavior Research Methods, 42(4):1079–1086, 2010.] X. Zhang, et al. A high-resolution spontaneous 3d dynamic facial expression database, FG 2013. [12] S. Mavadati, et al. Disfa: A spontaneous facial action intensity database, TAC, 4:151–160, 2013.