Unsupervised Synchrony Discovery in Human Interaction

Abstract

People are inherently social. Social interaction plays an important and natural role in human behavior. Most computational methods focus on individuals alone rather than in social context. They also require labelled training data. We present an unsupervised approach to discover interpersonal synchrony, referred as to two or more persons preforming common actions in overlapping video frames or segments. For computational efficiency, we develop a branch-and-bound (B&B) approach that affords exhaustive search while guaranteeing a globally optimal solution. The proposed method is entirely general. It takes from two or more videos any multi-dimensional signal that can be represented as a histogram. We derive three novel bounding functions and provide efficient extensions, including multi-synchrony detection and accelerated search, using a warm-start strategy and parallelism. We evaluate the effectiveness of our approach in multiple databases, including human actions using the CMU Mocap dataset, spontaneous facial behaviors using group-formation task dataset and parent-infant interaction dataset.

Publication
Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2015
Jiabei Zeng
Jiabei Zeng
Associate Professor